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Abstract—Deep Packet Inspection (DPI) relies highly on reg-
ular expression due to its power of description, generalization
and flexibility. In DPI, the packet payload is compared against a
large number of rules written in regular expression. To achieve
high throughput, multiple regular expressions are combined and
compiled into one DFA, which leads to two problems: a) State
explosion of the DFA; b) Sub-rule distinguishing in the combined
ruleset. While the first problem has been extensively studied in
the recent years, we did not find any literature which formally
discusses the second problem in detail. We formulate it and
propose Sub-Rule Distinguishable DFA (SRD-DFA), an extended
DFA structure, and develop techniques to distinguish sub-rules
from multiple regular expressions upon this structure. SRD-DFA
can achieve the same throughput as minimized DFA, since it only
incurs little extra memory consumption without extra run-time
computation. Experimental results under the L7-filter ruleset and
a subset of Snort ruleset demonstrate that our approach achieves
8 to 14 times higher throughput than the DFA without rule
combination, while only introducing less than 8.4% overhead
of state increase compared to the minimized DFA after rule
combination. Furthermore, SRD-DFA can be easily used with
advanced DFA compression algorithms to achieve much less
memory consumption.

I. INTRODUCTION

Due to its power of description, generalization and flexi-

bility, regular expression has become a fundamental building

block for various branches of computer science research areas,

such as information retrieval (IR), compiler techniques and

network security, etc. In practice, regular expressions can

be implemented by either Nondeterministic Finite Automata

(NFAs) or Deterministic Finite Automata (DFAs). NFAs re-

quire much less space consumption but take more time for

pattern matching, while DFAs consume much larger space but

lead to much less time for matching.
Generally speaking, the choice between NFAs and DFAs

depends on the characteristics and requirements of appli-

cation scenarios. There are two categories of them: a)

Rate Insensitive Applications (RIAs), such as text process-

ing/filtering/classification in IR field, which normally con-

tains less than hundreds of rules but demands extending

the expressive power of regular expressions with features

such as capture, backreference and lookahead, at the expense

of lowering the maximal processing rate; b) Rate Sensitive

Applications (RSAs), such as network-based intrusion detec-

tion/prevention systems (NIDS/IPS), which could easily reach

10,000 signature matchings in typical systems like Snort [1],

a widely used open-source NIDS. To meet the requirement of

line processing rate, RSAs rarely support extended features as

RIAs do.

From this taxonomy, regular expression engines for RIAs,

such as PCRE [2], GNU POSIX regexp [3] and Boost Regex

[4], are typically implemented with NFAs, supporting various

extended features; while regular expression engines for RSAs

should be implemented with DFAs to achieve high matching

speed. However, due to historical reasons, Snort is built with

PCRE; L7-filter (the Linux Application Protocol Classifier [5])

uses GNU POSIX regexp for regular expression matching.

While these libraries are not well designed for supporting

RSAs, considerable issues have been raised, such as system

line rate degradation [6].

Nowadays, in order to match a great number of regular ex-

pressions efficiently, multiple regular expressions are generally

combined and compiled into one DFA. However, the DFA

combination method natively leads to two problems. One is

DFA state explosion. For example, an attempt to combine 88

out of 1450 snort rules into one single DFA could cause mem-

ory consumption more than 15 GB [7]. In the recent years, a

large number of approaches have been proposed to address the

state explosion problem occurring when compiling complex

regular expressions into a single DFA [6][7][8][9][10][11][12].

These approaches can achieve 1 to 2 orders of magnitude in

memory size reduction, compared to traditional DFAs, without

introducing significant extra computation overhead.

The other one is the sub-rule distinguishing problem. The

combined and minimized DFA can not identify which one

or multiple sub-rules are matched when the DFA arrives at

some acceptable state (called the “final” state). The NFA

alternatives are capable of distinguishing matched sub-rules,

but are not time-efficient as discussed above. To achieve

sub-rule distinguishing, applications typically execute each

rule separately, which we call “Per-rule Execution Model”.

Obviously, it is a time-inefficient approach to match a large

number of regular expressions. In this paper, we propose

Sub-Rule Distinguishable DFA (SRD-DFA), an extended DFA

structure, and a novel DFA construction and minimization

algorithm to generate and minimize SRD-DFAs without losing

information required to identify matched sub-rules. In SRD-

DFAs, to maintain sub-rule information, we extend finite

automaton structure, add extra but small storage for each final
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ε-NFA NFA

RE DFA

Fig. 1. The translation of four different notations for regular languages [14]

state, and keep the unique sets of sub-rules distinguishable in

all steps of DFA construction and minimization process. SRD-

DFA can achieve the same throughput as minimized DFA,

since it only incurs little extra memory consumption without

extra run-time computation.

Experimental results under the L7-filter ruleset and a subset

of Snort ruleset show that our method introduces quite limited

overhead with less than 8.4% state increase compared to the

traditional DFA minimization algorithm, while achieving 8 to

14 times higher speed than per-rule execution implementation.

The results show uniform throughput enhancement under

both the L7-filter/Snort rulesets and normal/abnormal traffic,

indicating the generality of our solution.

The remainder of the paper is organized as follows. After

introducing background and related work in Section 2, we

present the problem statement and methodology, and detail

our algorithm in Section 3. Then we evaluate our methods

through experiments under the L7-filter and Snort rulesets in

Section 4. Finally, we conclude our work in Section 5.

II. BACKGROUND AND RELATED WORK

Chomsky hierarchy, which was proposed by Noam Chom-

sky in 1956, divides formal languages and their grammars

into four types: 1) type-0, recursively enumerable languages

(unrestricted grammars); 2) type-1, context-sensitive languages

(context-sensitive grammars); 3) type-2, context-free lan-

guages (context-free grammars); 4) type-3, regular languages

(regular grammars) [13]. The automata which recognize the

four type languages are turing machine, linear-bounded non-

deterministic turing machine, non-deterministic pushdown au-

tomata, and finite state automata, respectively.

Regular expression is the notation of regular languages.

Since its power of description, generalization and flexibility,

regular expressions have been widely used in various aspects

of computer science. Typically, regular expressions, which are

not evaluated directly, are translated into NFAs or DFAs for

matching. Their translation map is given in Fig. 1 [14]. A large

number of algorithms have been proposed to construct finite

automata from regular expressions. The work in [15] presents

a taxonomy of finite automata construction algorithms. One

of the construction algorithms was proposed by K. Thompson

[16], which is also called “structural induction” in textbooks

[14] and considered more readable than Thompson’s original

paper.

Fig. 2. Minimized but sub-rule undistinguishable DFA

aa*ba

aa*ba, ab*ba

ab*ba

ba*ba

Fig. 3. Sub-rule distinguishable DFA

The finite automaton constructed from regular expression

by Thompson’s algorithm is a ε-NFA. ε-NFAs have almost

the same properties with NFAs, except that ε-NFAs have

ε-transitions while NFAs do not. In the rest of this paper,

we also use the terminology “NFAs” to refer to ε-NFAs

for simplicity. Since NFAs tend to be time-inefficient, rate-

sensitive applications usually deploy DFA based equipments

for regular expression matching. The most popular algorithm

to convert NFAs into DFAs is “subset construction” [14].

The DFA generated by subset construction algorithm is

usually not state-minimized. For DFAs which accept the same

language, there is an equivalent state-minimized DFA. In the

process of DFA minimization, states are divided into several

equivalent groups; the states within each group are equivalent.

Therefore, states in the same group can be merged together

into one state so that the number of states is reduced. Many dif-

ferent DFA minimization algorithms have been proposed [17].

A well-known and easy-to-understand algorithm, which is

introduced in almost all textbooks, is the table-filling algorithm

[14], with a time complexity of O(n2). The most efficient

minimization algorithm ever known is Hopcroft’s algorithm,

whose time complexity is reduced to O(nlogn) [18]. In order

to describe our algorithm more clearly, we will use table-

filling algorithm as a basis in the following sections, but our

idea can also be integrated with other algorithms including the

Hopcroft’s algorithm without incurring special overhead.

III. METHODOLOGY

A. Problem Statement

We first informally illustrate the problem of sub-rule distin-

guishing, and then formulate it. Given a set of three regular
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expressions {aa*ba, ab*ba, ba*ba}, we need a combined

DFA which matches the three regular expressions simultane-

ously. Traditionally, these regular expressions are combined

as aa*ba|ab*ba|ba*ba. Then after NFA construction, DFA

generation and minimization, the final built DFA is in Fig.

2. Obviously, it has only one final state, which is less than the

number of sub-rules in the ruleset. So this DFA is sub-rule

undistinguishable. It is necessary to construct a DFA such as

the one in Fig. 3, which is sub-rule distinguishable. When

final state 8 is reached, it indicates that sub-rules aa*ba and

ab*ba are matched; when final state 10 is reached, ba*ba
matched; and final state 11 for aa*ba, final state 12 for ab*ba.

This example intuitively shows that traditionally combined and

minimized DFAs are NOT sub-rule distinguishable. We need

to find algorithms to build sub-rule distinguishable DFAs.

We formulate the problem of sub-rule distinguishing as

follows: Let {REi}(1�i�n) be a finite set of regular expres-

sions, define Li = L(REi) to be the language described by

REi, i.e. the set of strings which are accepted by REi. Define

L =
n⋃

i=1

Li,

the problem is whether there is a finite automaton A (either

a NFA or a DFA), which accepts language L(A) = L, and

for each input string s∈L, can indicate whether s∈Li or

s�∈Li (1�i�n).

B. Analysis and Solution

The traditional method to build a single DFA for multiple

regular expressions is combining regular expressions with

operator “OR” (“|”) into one single rule and then compiling

it into a NFA, which is then converted into a DFA and

minimized. Transformations are performed upon the single

“big” rule, not to distinguish sub-rules. Therefore, the final

built DFA can only indicate whether the “big” rule is matched,

but it cannot find out which one or multiple sub-rules are

matched.

To solve this problem, we must distinguish each and every

sub-rule in all steps of the DFA building process. Following

this methodology, given R the finite set of regular expressions,

we extend a finite automaton to 6-tuple (Q,Σ, δ, q0, F, M),
where:

• Q is a finite set of states;

• Σ is a finite set of input symbols;

• δ is a transition function: for a NFA, δ is a mapping

Q×Σ→2Q, where 2Q is the power set of Q; for a DFA,

δ is a mapping Q×Σ→Q;

• q0 is the only one start state;

• F⊆Q is a set of final states;

• M is a mapping F→2R, where 2R is the power set of

R.

We propose a method for SRD-DFA generation, which

consists of three algorithms:

Algorithm 1 GenerateNFA()

1: For every sub-rule REi(1�i�n), construct a NFA

Ni(Qi, Σ, δi, q0i, Fi, Mi)(1�i�n) by Thompson’s algo-

rithm [16]; then for every f∈Fi, set Mi(f) = {i}, which

means that REi is matched when one of the final states

of Ni is reached;

2: Construct a “big” single NFA N(Q,Σ, δ, q0, F, M): add a

new start state q0, and add n ε-transitions from q0 leading

to every start state q0i of Ni; set

Q =
n⋃

i=1

Qi, F =
n⋃

i=1

Fi, M =
n⋃

i=1

Mi

a aa b

1

2

4 73

5 6 8

9

10

J11

a ab b
12

14 1713

15 16 18

19

20

J21

b aa b
22

24 2723

25 26 28

29

30

J31

M(11)={aa*ba}

M(21)={ab*ba}

M(31)={ba*ba}

start

Fig. 4. Sub-rule distinguishable NFA

1) NFA Construction (Algorithm 1): Here we first construct

NFAs and store rule IDs in the mapping M for every sub-

rule, then combine them into a “big” NFA. In this manner, we

can identify each sub-rule for each final state. Take the above

ruleset {aa*ba, ab*ba, ba*ba} as an example, the constructed

NFA is shown in Fig. 4. The upper part is a NFA for aa*ba,

the middle part is for ab*ba and the lower part is for ba*ba.

Note that the M elements are the mapping to store sub-rule

information.

2) Converting NFA to DFA (Algorithm 2): In the process

of this algorithm, each final state of the generated DFA D
inherits sub-rule information from the final states in NFA N .

Therefore, DFA D can report matched rules when it arrives

at any final state. Applying algorithm 2 to the NFA in Fig. 4,

we get a sub-rule distinguishable but non-minimized DFA, as

in Fig. 5.

3) DFA Minimization (Algorithm 3): This algorithm is a

modified Table-Filling Algorithm (TFA), which is a recursive

process. The difference between the original TFA and modified

TFA is the basis of recursion. The basis in the original TFA

is that each of the final states and each of the non-final states

are distinguishable. Besides that, the modified TFA claims

that two final states are distinguishable if they belong to two
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Algorithm 2 ConvertNFAtoDFA()

1: Construct D(Q′, Σ, δ′, q′0, F
′, M ′), initialize Q′ = ∅, δ′ =

∅, F ′ = ∅, M ′ = ∅. Also set QN = ∅, QD = ∅;

2: Compute q′0: For NFA N , compute δ(q0, ε) = {qk}⊆Q;

let q′0 be {qk}, insert {qk} into QN , insert q′0 into Q′;
if {qk}∩F �=∅, set q′0 as a final state, and M ′(q′0) =
{∪M(f)|∀f∈{qk}∩F};

3: while QN �=∅ do
4: pop one element {qk} out of QN ;

5: if {qk} is not set as q′0, insert it into QD;

6: for every σ∈Σ do
7: compute {pk} = ∪δ(qk, σ);
8: if {pk}�=∅, and {pk}�∈QD then
9: insert {pk} into QN ;

10: end if
11: end for
12: end while
13: Let j = 1;

14: while QD �=∅ do
15: pop one element {qk} out of QD, let q′j be {qk},insert

q′j into Q′;
16: if {qk}∩F �=∅ then
17: set q′j as a final state;

18: set M ′(q′j) = {∪M(f)|∀f∈{qk}∩F};

19: end if
20: j = j + 1;

21: end while

Algorithm 3 MinimizeDFA()

1: Initialize a table of all unordered pairs of states of DFA

D(Q′, Σ, δ′, q′0, F
′, M ′) by leaving all entries unmarked;

2: for every pair (p, q) do
3: if p∈F ′ and q �∈F ′, or p, q∈F ′ but M ′(p)�=M ′(q) then
4: mark (p, q) to be distinguishable (“d” for short);

5: end if
6: end for
7: repeat
8: for every unmarked pair (p, q) and every σ∈Σ do
9: if (δ(p, σ), δ(q, σ)) is marked “d” then

10: mark (p, q) as “d”;

11: end if
12: end for
13: until no new entries are marked “d”;

14: For each state q, define [q] as the set of states {p|(p, q) is

not marked “d”};

15: Construct a new DFA D̃(Q̃,Σ, δ̃, q̃0, F̃ , M̃), where

Q̃ = {[q]|q∈Q′}
δ̃([q], σ) = [δ′(q, σ)] (∀σ∈Σ)

q̃0 = [q′0]

F̃ = {[q]|q∈F ′}
M̃([q]) = M ′(q) (∀q∈F ′)

16: Output DFA D̃.

aa*ba

aa*ba, ab*ba

ab*ba

ba*ba

Fig. 5. Non-minimized DFA generated from NFA

(a) Initial status of the table in table-
filling algorithm

(b) Final status of the table in table-
filling algorithm

Fig. 6. Table-filling algorithm

different sets of sub-rules. Only final states which belong to

the same set of sub-rules will be merged in this minimization

process. Therefore, sub-rule information can be maintained

correctly.

We minimize the DFA in Fig. 5 according to Algorithm 3.

The initial table is in Fig. 6(a). Note that “d” marks slanting to

the left are set by original TFA and “d” marks slanting to the

right are set by modified TFA. After several recursive rounds,

we get the final table in Fig. 6(b). It shows that only state 3

and 6 are non-distinguishable and can be merged. Therefore,

we finally generate a sub-rule distinguishable DFA in Fig. 3.

The basic idea of SRD-DFA generation is to distinguish

final states at the very beginning of NFA construction from

a set of regular expressions, and keep them distinguishable

when performing DFA minimization. In order to describe our

algorithm more clearly, we use table-filling algorithm as a

basis in this section, but our idea can also be integrated with

other algorithms including the Hopcroft’s algorithm without

special overhead. Actually, we have adopted this idea to the

Hopcroft’s algorithm and obtained all of the experimental

results in Section 4.

C. Feasibility of Further Compression

Since the information of sub-rules is stored in extra memory

of final states, not changing the fundamental structure of

DFAs, SRD-DFAs can be compressed by advanced DFA

compression algorithms, such as [9][10][11][12], to achieve

even less memory consumption. Edge compression algorithms
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can be applied to SRD-DFAs without modification, because

edges in SRD-DFAs are the same as those in traditional DFAs.

State compression algorithms need to be modified a little

bit not to merge final states which contain different sub-rule

information.

IV. EVALUATION

In this section, we evaluate our methods by comparing

with the traditional non sub-rule distinguishable DFAs and

the DFAs with per-rule matching. Our experiments are carried

out with the recent regular expression rulesets from practical

DPI applications over real-life network traffic to generate valid

results.

A. Experimental Setup

We implement our generation algorithm for SRD-DFAs

based on JFlex [19], an open source lexical analyzer generator.

To maintain fairness, we also use it to generate the traditional

DFAs with regular expression combination. The DFA execu-

tion engine in our experiment is written in C++, which loads

DFA structures and receives incoming network traffic data in

trace file format. The throughput of the matching is calculated

by dividing the amount of layer 7 application data by average

time of 10 runs. We carry out all the experiments on a desktop

PC with Pentium IV 3.80 GHz CPU and 4 GB of memory.

We carefully select two sets of regular expressions for

our experiments, both of which are from practical working

systems. One is from L7-filter [5], with the ruleset updated on

Dec. 18, 2008. Totally 107 regular expressions are selected,

which are further divided into 5 groups according to the

algorithm proposed in [6]. The other ruleset is from Snort

[1], which is composed of 89 regular expressions organized

into 3 groups.

The input network traffic data is also from real-life. One data

set standing for normal traffic is collected at campus network

of Tsinghua University, with an average TCP flow size of

11.74 Kbytes; the other data set representing the abnormal

(intrusion) traffic is collected by MIT DARPA project [20],

with an average TCP flow size of 46.01 Kbytes. With both

data sets, we execute deep packet inspection over the layer

7 application data, after the IP defragmentation and TCP

reassembly processes.

B. Results

Table I gives the total numbers of states in the minimized

DFAs and our SRD-DFAs. Compared to the minimized DFAs,

SRD-DFAs only increase the number of states by no more than

8.4%, for both the L7-filter and Snort rulesets. It demonstrates

that we actually achieve the sub-rule distinguishing function-

ality with rather limited overhead in a ruleset-insensitive way.

Another slot of results given in Table II shows the maximal

throughput with the per-rule execution implementation and our

SRD-DFA based implementation. Compared with the baseline

method of sub-rules distinguishing, our method obtains 8

to 14 times higher throughput, which is significant enough

for real deployment considering its limited cost. Compared

TABLE I
COMPARISON OF NUMBERS OF STATES

Rule set
Total # of States in
Minimized DFAs

Total # of States
in SRD-DFAs

Ratio
of State
Increase

L7-filter
90,415 97,670 8.02%

(5 groups)

Snort
16,062 17,405 8.36%

(3 groups)

TABLE II
COMPARISON OF THROUGHPUT

Throughput (Mbps)

Rule set Implementation MIT
Trace

Tsinghua
Trace

L7-filter
Per-rule Execution Model 42.7 41.9

SRD-DFAs (5 groups) 374.2 584.9

Snort
Per-rule Execution Model 45.7 45.4

SRD-DFAs (3 groups) 414.4 382.0

with traditional minimized DFA, SRD-DFA can achieve the

same throughput since it only incurs little extra memory

consumption without extra run-time computation. Again, our

method shows uniform throughput enhancement under both

the L7-filter/Snort rulesets and the normal/abnormal traffic,

indicating the generality of our solution.

V. CONCLUSION

In this paper, we formulate and present solutions to the

problem of sub-rule distinguishing in the process of combining

multiple regular expressions into one single DFA. We have

proposed novel algorithms to generate such DFAs which could

inherently indicate the matched one or multiple sub-rules at

its arrival to any of the final states. Experimental results with

practical rulesets have shown that our SRD-DFAs incur less

than 8.4% state increase compared to the traditional state-

minimized DFAs, but impressively achieve up to 14 times

higher maximal throughput than the per-rule execution based

implementation without combination. Furthermore, advanced

DFA compression algorithms, such as [9][10][11][12], could

also be applied to our solution to achieve even less memory

consumption.
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